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ABSTRACT

A routine has been developed which computes the real and the complex roots

of polynomials with real coefficients up to the tenth degree. In case of an

even polynomial it computes its quadratic factors and solves each factor by

the quadratic formula. In case of an odd polynomial it computes one real root

by locating it and refining by Newton's algorithm. Then it removes the

computed root from the polynomial reducing its degree by one. The reduced

polynomial is of even degree and it is solved by quadratic factors. The

routine fails when (a) the real roots are of even multiplicity, converging then

to wrong values, (b) the real roots are of odd multiplicity, not converging at

all, (c) the polynomial is badly conditioned (very small changes in coefficents

cause large changes in the values of the roots) converging then to wrong values.

The routine is planned to compute frequencies in vibrations problems which

involve complex roots. Statistical evidence seems to indicate that only

polynomials with real roots can be badly conditioned. If this were the case

the handicap (c) would be of minor importance only.
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A polynomial of n-th degree can be written as

f(x) = xn + a1 x nl + ... + an 1 x + an = i aixn'i
i=o

where a. = 1, and ai are real numbers. The roots of f(x) will be denoted by

xl, x2 1 . . . . . . . n.

The coefficient a of x n has been set equal to one for convenience.
0

If n is even all the roots may be complex numbers. If n is odd there

must be at least one real root, in which case we start by finding this real

root.

(a) Locating One Real Root for an Odd Polynomial.

We shall establish first the bound for all roots, which is given by the

theorem

UB(upper bound) = Max Jail + 1,

Where Max Jail is the greatest coefficient a,, (i = 1,2,...,n) in absolute

value. Thus

Ki <UB.

Let us find two consecutive values of f(x) for real values of x, say

f = f(xl) and f2 = f(x 2 )' where x, = - UB+ýx; x2 = - UB+2Ax, and &x is an

assigned step size of x, chosen sufficiently small that there is likely to

be only one real root between - UB + kAx and - UB + (k + l) Ajc for any k. If

f1 < 0 and f2 > 0 then the real root is between x 1 and x2. If f 1 and f 2 have

the same sign, then compute f 3 and compare the signs of f 2 and f3 and so on.

Suppose that at some value x k+l, f changes sign, that is

fk < 0 and fk+l > 0.

Then the real root xl is located between xk and Xkl,

Xk <x < Xk+l"
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(b) Refining the Located Root by Newton's Method.

Let us call the first approximation to the root

x(l) . Xk+l.

The next approximation is then

x(2) = x1 - f(x(1))/f,(x(1)), f,(x(1)) (d f(x))

and generally

x(J+l) = xO) _ f(x(J))/f,(x(J)).

The iteration continues until two consecutive values of P)becomes equal

to each other within some small preassigned number. This establishes the first
real root = x .

(c) Removing from f(x) the Known Real Root.

The next step is to remove this real root by synthetic decision, and find

the coefficients bi of the depressed polynomial. f(x) my be written

•=o ~n-il --

f(x) = aX n-i = (x-i) n bi xnli

i=o ?:

Equating the coefficients of the sawe powers in both members of the

above identity gives

b =1.
0

br ar+ b r-lii (r = 1,2, .... n-1).br = ar r- b l '1  ....

The depressed polynomial gl(x) = r bi xn'l'i is of even degree.

(d) Computing Quadratic Factors of Even Polynomials.

An even polynomial can always be factored into real quadratic factors.

Suppose that

2
x +px+q
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is a real quadratic factor of f(x). Then f(x) may be written

n n-i 2  n-2 xn-2-i

f(x)= Z aix +p x+q) bi
i=o U

Equating the coefficients of the same powers in both members of the

above identity gives the coefficients bi of the reduced polynomial.

b0 = l; b -= 0.

br = ar - Pbr.1 - qbr. 2 ; (r = 1,2 .... n-2).

In the case when the quadratic

2
x +px+q

is not an exact factor of f(x), the factoring gives

n ai x -=(x 2 + p x + q) bi xn-2 i + R

where

R = S1 x + S .

Equating the coefficients of x gives

S1 = bn-1; S2 = bn + Pbn.1 .

Bairstow devised an itere.tion scheme for improving the values of p and

q, in such a way that the coefficients S1 and S2 and the remainder term

R approach zero.

Bairstow Algorithm. Let p and ý be the exact values of the coefficients

which will make S1 and S2 vanish. The approximate coefficients l and S2 are

functions of p and q and a Taylor series expansion (nonlinear terms being

neglected) with p = p + Ap; q = q + Aq yields

SIG, q) - 0 = Sl(p, q) + Ap(CS1 /6p) + Aq(6S1 /6q)
(1)

S 2(= b. a 0 = S2 (pb q) + AP(Pn/.p) +1

Since S 1= b n-Iand S 2 =bn +pb n-I
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we have

2$1/4 = &nllbP; 682/'6 = 21bI/4 + p(&.._/cp) + bn.1

ýSll. = 6b. 1 /q; c%2/1 = &l./q + P(a.ll/-q)

Upon using the relation

br = ar - Pbrgl-qbr- 2

and introducing the notation

- (6br/ap) =d l

br
we obtain the recursion formula for r

d br " -dr- - qdr-1; d-1 - 0; do - 1; ( = , 2, ..... ,n-2)

A similar recursion formula for can be obtained, giving -(cbr/6q) = dr-2

Hence

6Sll/ -- = - d2; •113q d n-3

(2)

s2 /p = - dnn1 + Pdn-2 + bn-l; IS2 /q d n-2 "d n-3

Substituting (2) in (1) yields

(Ap) dn- 2 + (Aq)d bn-3 =-bn-
(Ap) (d- -b.n-) + (Aq) dn-2 i b

which, solved by Cramer's rule for Ap and Aq gives

bn+l dn-3 dn-2 bn-i

A -- •n dn- 2  Aq (d n -1i- ) bn

Den Den
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where

d z.2 dn _3
Den = (dn.1 .bn-l) d n_2

Since the non-linear terms in the Taylor. expansion have been neglected

the iiew values of p and q

p = p +Ap; q = q +Aq

will not represent the true coefficients of the quadratic factor. We expect

them to be better approximations than p and q in the sense that they will

make S1 and S2 smaller. This procedure can be repeated until Si and S2 will

vanish within some prescribed small number.

Initial Approximations. The convergence of the Bairstow algorithm depends

on the initial approximation being close enough to the true value. We have

selected the following initial approximation to p dnd q:

1 2

p = 2(lan-ll/n)n-l, q = lanI n

The above approximations are averages derived from the well known

properties of the polynomial coefficients,

- n n 1 n
an =T i anl= • x2 rJ-1

This initial approximation gave convergence in very many widely different

cases which were tested. The routine diverged or converged to wrong values

for polynomials with multiple real roots. Some of the 9th degree polynomials

with all real roots were badly conditioned and converged to wrong values.

Polynomials with all or some complex roots converged in all cases to the

correct values.

It has been found that computation of quadratic factors of odd

polynomials by the Bairstow algorithm, which we use in our routine, diverged

in all cases which were tested, even in those where the initial approximations

were very close to the true values. This interesting fact has not to my

knowledge been registered in the existing literature on the subject.
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High degree polynomials with coefficients of the order 103 or higher

must have the roots reduced by a constant factor, say 10 k, in order to

make the coefficients smaller. Otherwise the intermediate products arising

in the computations my exceed in magnitude the capacity of a machine.

The &ppended flow chart and the program in the FORAST language explain

the computabional procedure.

TADEO
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FLOW CHART (Contid)

Compute A.= = Max (A11, IA2 1 ...... , IAI)
Compute Upper bound = UB = A + i.

Compute consecutive values fk f(xk); k = 1$2,....

(Iniuial value x = ((K)(Step) - UB).

SCompare two consecutive values fk and fk+l
If and fk+l have opposite sign then the root xl is located, xk < xk+'

N-i N-i-i

Find coefficient of the derivative polynomial N Cxi

N-i N-i

(fI(x) = Zn7 cixNli = =j0Ai(N-i) xN-li

n=o =

Ci A Ai(N-i), (i=l,2 ... n-1).

Refine the value of x1 by Newton's method

Taking as initial approximation x(0) = Xk+I
x (i+l) =_ x(i) . f(xj)/f' (xi);

When x(k+l) = x(k) within small number then

x(k) =- Pint-

SDoes N-1--2 yes

NO

Find the coefficient of the reduced polynomial Tixn'i'l

n-i n-i-i(f(X) --(x - E2) T ni-.)

Ti =Ai + (i-i); Replace Ai by Ti.

GOTO

EMu
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APIPNDIX II
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PROGRAM IN FORAST IANGUAGE

BLOC(A-AlIjIB-8103D-DIO3C-C1O)5-S113T-T1033 2
START READ(NF)STEP33 3

READ31O)NOS.AT3A33
HONF/2% ENTERIWH.FRAlH)WHN)FRAN33
IF(FRAN

0
O.5IWITIIIN3.00001)GOTO300031 6

IF-NOTINF-2
0
0) wiTHlIN3.00031) GOTOIEVEN33 7

ALP1@A13 BET1
0
A2% GOTOISO33 8

ODD ENTERICVFTOIINFIN)% 9
SET3R*133 AMOABS3A133 10

1. IF-ASS3AtIR+l3 %AM)G0T032.33 11
COUNTIN)IN3R3GOTO3l1%3 GO0103.) 12

2. AM0AB5(A.cR+1)[3 13
COUNT3N)INIR)GOTOI1.)% 14

3. UB
0
1+AMS 15

SUM
0
1% SET31

0
133 16

3.1 5UM05UM*(-UB3+A,I3 17
COUNHtN+1 3 N3 I 300703.133 18
SUMIOSUM% SETIKO1)% 19

3.11 ENTERICVITOF)K)KF)% 20
EXIOKF*STEP-UB 21
5101% SET31

0
133 22

GPS 5,31+13
0
5,I'EX1 +A911 23

COUNT3N+131N313 GOTOIGPS)3 24
SU!120S, N+113 25
IF3ABSSSUM2-SU34fl3OA653SUM2.SUM1lnoctO33.23, 26
SUMIOSUM2% INTIK

0
K+1)3 070(33.1133 27

3.2 SET31
0
133 COONF% 28

4. ENTER(CVITOF3 I 3F33 29
C.*I A91*3 NF-I F 3 30
COUNTIN)INIl 13 00704.33 31
SET3J

0
133 SU1OCO3 32

GPSD SD,IJ+13
0
SD.J*EX1 +C.J% 33

COUNTIN)1N3.J3 GOTO(GPSD)% 34
SUIDOSD .N% 35

4.1 EXOEX1 -ISUM2/bUMDIý. 36
IF(EXOEX1 ).ITHIN .O00001).OTO(ROUTI)T 37
EXI DEX% 5101% SET) 0113 S01OC03 38

5. 5,fl+l3OS,1*EX4A,13 b.D,3I413OSD*1*EX+C,I% 39
COUNT(N41I INi) 3 GOTOIS.)% 40
SUM2S.I(N+133 SUMDOSU.N% G0TO(4.133 41

ROOT1 PRINT*RROOT%3EXI% 42
T001% SET3

0
133 43

6. T,IeAI+EX*T.(I1-13% 44
COUNT(N) INC I 300706.33 45
MOVEIN)NOS.FROM(TI T03A33 46
IF-NOT(NF-1

0
2)'.3Tk1iN(.0001)(,aTOI7.1 47

ALPl
0
A1333ET1

0
A23NFONF-1¶sGTOt~,Su3 48

7.1 INT3NON-113 NFONF-1% GOTU(EVEN) 4
EVEN ENTER3CVFTOI3NXF3N)% 50

P
0
A8$[A.IN-1))/NFQ

0
AP'(A9,N3% 51

YOI/INF-13%7 LNTER(P0*ERlPIY)ALP)% ALP1
0
2*ALP% 52

X02/NF% ENTERI POWCR3.4iI( bETI % 53
BEl INTINON+133 SETIR*233 8001% D001% 54

BIOAI-ALPI% D1
0
61-ALP13 55

6E B,R@A.R-ALP1*B,IP-1 3-BETI*B,3R-2)% 56
DRQB,R-ALP1*o,3R-13-9ETI*D.3R-233 57
COUNT 3NI IN 3R)G00703 E 3 58
1NT(NON-13¶% 1.1

0
31.N-I33) O3NAL1BU%3 59

3CAAESIS +AB~35(2I3 60
IF 3ýA03w I TH I N(UOO1I) OTO(y,1)% 61

~ 62~ 3/ZEL
DEBO 3oN- 3*06(- -i N1)/DEL% 64
ALP2*ALP1+DELALX BET2

0
5ET1+DELBE% 65

ALP1
0
ALP2% BETIOBET2% 3.OTO(BE11% 66

DFLTAOALPI**2-4*BET13 67
3 F3DELTA*0lG0T038. 33 68
ALPHO-ALP1/2% 33ETOSQRT3DELTAI/2% 69
K 1

0
ALPH+BET% X2*ALPH-SET% 70

ROOTR PRINT*RRUOTlý%3XI33X233 71
PRINT*COEFB33ALPl3 33ET1 33 72
I F-NOT3 NF-20h.ýITH-IN3 .00001 300709.3 73
G0T03START)% 74

3. ALP33
0
-ALP1/21 BETOSCMT3-DELTA3/2% 75

ROOTI PRINT*IROOT5%fALP313 36ETI% 76
PRINT*COEFS%3ALF1I)IBET1)% 77
IF-NOT(NF-2

0
03W1TH1lN3.000(4300OT039. 33 78

GOTOISTART33 79
IF-NOT3NF-202)WITHIN(.00001)G0TO39.1 33 80
INTINON-2)% Nr

0
NF-23 ALP O1132 BET1

0
B23 607035033 $I

9.1 NFONF-2k INT3NON-21% 82
MOVE(N)NU50.FROM~b1 3T03A1 3% 83
GOTOIEVENI3 84

LNI) GOTOISTART336 85
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